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Abstract

Background: Cardiotocography and obstetric ultra-
sound imaging are the standard for fetal monitoring dur-
ing pregnancy and labor. These technologies are often ex-
pensive and, with very few exceptions, can only be used
by highly trained personnel. Medical care during ges-
tation differs in low- to middle-income countries (LMIC)
from high-income countries. Our research has previ-
ously demonstrated that a low-cost 1D Doppler ultrasound
(DUS) can be used during pregnancy to assess maternal
and fetal health. However, differentiation between DUS
signals from the fetal heart (FH) and umbilical cord (UC)
can be challenging for untrained users. Methods: We
trained a random forest classifier to detect whether 1D
DUS recordings originated from FH activity or UC blood
flow. This classifier was trained using the relative energy
in each 10 Hz interval of the power spectrum derived from
a balanced set of recordings. We used leave-one-out cross-
validation to test our results. Results: We achieved an area
under the curve of 0.93 and an accuracy of 82.6% for iden-
tifying FH activity, and 84.7% for UC blood flow. Conclu-
sions: It is possible to differentiate the source of the 1D
Doppler ultrasound signal. Depending on the source, dif-
ferent clinical parameters can be analyzed, enabling more
targeted assessments of maternal and fetal health.

1. Introduction

Mothers and fetuses are commonly monitored during
pregnancy using technologies such as cardiotocography
and obstetric ultrasound imaging. Despite being the clini-
cal standard that has been in use for multiple decades, they
are only available to a fraction of the world. Current moni-

toring technologies are expensive, have limited specificity,
require constant maintenance, and can only be operated by
highly trained personnel [1]. In consequence, the clinical
standard in high-income settings is not readily available in
low- to middle-income countries (LMIC).

LMIC account for 95% of maternal deaths world-
wide, and approximately 98% of neonatal deaths and still-
births [2]. Maternal and fetal mortality is preventable
in most cases, provided early identification of pregnancy
complications and adequate treatment. Maternal hyperten-
sion, preeclampsia, and fetal growth restriction (FGR) are
the main contributors to maternal and fetal morbidity and
mortality. Furthermore, the protocols available to screen
these complications in LMIC are less precise than those
used in high-income countries. For example, in the ab-
sence of ultrasound imaging, fetal growth is assessed by
manually measuring the symphysis fundal height [3].

In our previous research, we introduced a smartphone-
based medical system to improve maternal and fetal mon-
itoring in LMIC [4]. This system comprises a one-
dimensional (1D) Doppler ultrasound (DUS) to record car-
diac and uterine activity, and a blood pressure cuff to mon-
itor maternal pressure. Our system has been successfully
used by traditional birth attendants in Guatemala, as it re-
quires minimal training to operate. Moreover, we have
evaluated fetal development [5] and maternal hyperten-
sion [6] using prenatal 1D DUS signals.

One-dimensional DUS signals can capture rich informa-
tion about the activity of the fetal heart (FH) and circula-
tion in important blood vessels, such as the umbilical ar-
teries. For example, 1D DUS is useful for detecting the
opening and closing of FH valves, which is important for
evaluating congenital heart disease [7]. Alternatively, 1D
DUS can be used to evaluate fetal vascular resistance in the
umbilical cord (UC) [8]. Extracting the right physiological
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parameters requires knowing the source of the DUS signal.
FH and UC sourced DUS signals have the pulse rate of

fetal heartbeats. This pulse rate is evident when listening
to the recorded signal. Audibly differentiating the source
of the recording is not straightforward because both sig-
nals have the same pulse rate. Unfortunately, as 1D DUS
signals are not the standard for fetal and maternal monitor-
ing, the automatic identification of the source of 1D DUS
signals is yet to be investigated.

The objective of this preliminary study was to assess
whether it is possible to train a classifier to differentiate
between FH activity and UC blood flow from 1D DUS
recordings. To achieve this, we trained a random forest
(RF) classifier using the power spectral density (PSD) of
the DUS recordings. In the future, such a classifier could
benefit the users of our system by informing them in real
time the source of the 1D DUS signal being recorded.

2. Methods

2.1. Data Description

The data used in this study were acquired by tra-
ditional birth attendants in Pemba, Tanzania. The
study was approved by the IRB of Emory University
(STUDY00005252). The recordings were obtained dur-
ing monthly check-up visits, where the birth attendants
recorded 1D DUS signals, maternal pressure, and mater-
nal weight. We included in the analysis women between
18 and 49 years of age which enrolled in the study prior to
the first 19 weeks of gestation, and singleton pregnancies.

The DUS signals were acquired using the Contec Baby
Sound-A Pocket Fetal Doppler device (Contec Medical,
Qinhuangdao Hebei, PRC). This device produce an audi-
ble DUS signal which was recoded into a Samsung smart-
phone at a sampling frequency of 11,025 Hz.

2.2. Signal Processing

We limited our analysis to recordings that were labeled
as good quality by a custom signal-quality index [9].

Author R.B. was trained to differentiate FH from UC
sounds in 1D DUS signals by a trained ultrasonographer.
R.B. listened and manually labeled a balanced set of DUS
recordings in segments of 3.75 s. In the field, our system
provides signal-quality feedback to users using 3.75 s win-
dows. Thus, we aimed to use the same segments to classify
the DUS source. Due to the challenges of manual labeling,
we only included a small subset of the dataset in this pre-
liminary study. In total, there were labeled recordings from
16 different participants: eight participants had FH sounds
and eight participants had UC sounds. Although one par-
ticipant may have sounds from both structures, we only

included one type of source per participant to accentuate
the inter-participant variability across classes.

We extracted 12 to 14 segments of 3.75 s (41,343 sam-
ples) in length from each participant; a total of 100 seg-
ments per class. These segments may be consecutive but
they do not overlap. Next, we standardized each segment
by its mean and standard deviation.

The PSD of 1D DUS recordings has been shown to be
predictive of fetal and placental pathology [8]. Thus, we
computed the PSD of each segment using the pwelch func-
tion in MATLAB (R2024b). PSD was estimated using a
frequency resolution of 10 Hz, 50% overlap, and up to a
maximum frequency of 2 kHz. We obtained 201 PSD esti-
mates in the 0–2 kHz range from each DUS segment.

2.3. DUS Source Classification

We used the PSD estimates as classification features
to train a random forest (RF) classifier. To obtain
test results, we used the leave-one-participant-out cross-
validation (LOOCV) approach. The test predictions were
aggregated across all participants to obtain the overall per-
formance of the classifier. The number of classification
features was defined by the sequential forward feature se-
lection (SFFS) algorithm. Below, we describe the classifi-
cation steps performed in each training iteration.
1. Majority sub-sampling: Using LOOCV in a balanced
data set resulted in class imbalance during training. To
mitigate the effects of class imbalance in the classification
scores, we sub-sampled the majority class. First, we ob-
served Nmin, the number of training segments available
in the minority class. Then, we randomly sampled with-
out replacement Nmin training segments from the major-
ity class. We used the resulting balanced set of segments
to train the RF classifier.
2. Feature selection: We used the built-in sequentialfs al-
gorithm in MATLAB to select the best subset of features.
The SFFS algorithm adds classification features one-by-
one, selecting at each step the feature that reduces the loss
function the most. Once the loss function fails to decres,
the algorithm stops. In this study, we used the binomial
deviation loss function calculated from the out-of-bag pre-
dictions of the RF classifier.
3. Classification: The RF classifier consisted of 100 clas-
sification trees and was trained using the balanced training
set and the optimal subset of features defined by SFFS.
4. Model evaluation: At each training iteration, the RF
classifier was used to generate predictions on the seg-
ments of the test participant. We recorded the classifica-
tion scores to assess the area under the receiver-operating
characteristics curve (AUROC). The classification labels
were recorded using a standard threshold of 0.5. These la-
bels were used to calculate the total confusion matrix and
model accuracy.
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Figure 1. Examples of 1D DUS signal and their PSD of (A, B) fetal heart and (C, D) umbilical cord sounds.

3. Results

3.1. Power Spectrum of DUS Recordings

Fig. 1 shows the 1D DUS signal and PSD of one FH
(A and B) and one UC (C and D) recording. Both signals
show bursts of activity at each heartbeat. These plots show
that both signals have similar periodicity, which makes it
difficult to differentiate them by only listening to them.

Fig. 2 shows the average PSD of all segments recorded
from FH and UC sounds. In average, the FH PSD had most
of its amplitude in frequencies below 500 Hz, and then it
decayed at higher frequencies. In contrast, the UC PSD
increased at higher frequencies than the FH PSD, and had
most of its content between 400–900 Hz. These morpho-
logical PSD differences may be useful for classification.

3.2. Classification Results

At iteration, the SFFS algorithm selected only 3 to 7
features (µ = 4.94, σ = 1.29) out of the 201 available. Fig.
3 shows the number of times that the power of each fre-
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Figure 2. PSD (mean ± standard error) of all segments of
umbilical cord (blue) and fetal heart (red) sounds.

quency was used in training. The power at 50 Hz was the
most robust feature, it was used by all classifiers. The re-
maining features were selected from bands around 200–
400 Hz and 1,000–1,200 Hz.

The classifiers correctly classifier 82 FH segments and
85 UC segments. Averaging the intra-participant predic-
tions, 82.6% (σ = 27.7%) of FH segments and 84.7% (σ
= 20.1%) of UC segments were correctly classified. Fi-
nally, we obtained an AUROC = 0.93 using the aggregated
prediction scores.

4. Discussion

The objective of this study was to evaluate whether the
PSD of 1D DUS recordings could be used to distinguish
between fetal cardiac and umbilical sources. Our results
showed that these signals have distinct PSD morphologies
when recorded from the FH or UC. Furthermore, an RF
classifier was able to discriminate between both sources
with an average detection rate of more than 80% and an
AUROC of 0.93. These results strongly support the use of
such signals to provide real-time feedback to users.

During gestation and labor, maternal and fetal monitor-
ing is important to screen possible complications and pro-
vide the best care possible. Although the current standard
is to use ultrasound imaging to fetal cardiac and umbili-
cal assessments, this technology is expensive and requires
highly trained operators; the current clinical standard is
out of reach for most settings in LMIC. Using 1D DUS
has shown promise in the detection of FGR, fetal anemia,
abnormal vascular resistance, and maternal hypertension.
However, there is still a need for well-trained users that
can differentiate 1D DUS signals from different fetal car-
diac, umbilical, placental and maternal sources. Our re-
sults show that it is possible to use the PSD of these record-
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Figure 3. Number of times that the power of each fre-
quency was used in classification. The power at 50 Hz was
the most used feature. Note that all devices ran off batter-
ies and there were no devices powered by mains electricity
connected to the subjects.

ings to identify their source and to do so using only 3.75 s
of signal at a time. Therefore, it is feasible to implement
this approach in our current system and provide real-time
feedback to users. However, the size of RF classifiers de-
pend on the size of the training set. Thus, we need to ex-
plore other classifiers that are more compact to be included
in our smartphone application.

The present is a preliminary study to assess the potential
of this approach. We are aware that using such a limited
number of participants may raise doubts about the gener-
alizability of our results. We took measures to address this
issue . First, we used LOOCV to avoid intra-participant
correlations between the training and test segments. Next,
we avoided including signals from both sources per partic-
ipant. Finally, we used an SFFS algorithm to reduce the
number of features used by the classifier and avoid overfit-
ting.

We are currently working to increase the number of par-
ticipants included in this approach and the number of sites.
We have data available that were collected from three dif-
ferent countries. After reviewing the labels, we will in-
clude them in a larger classifier. Then, we will test the
performance of this larger classifier and its cross-setting
generalizability. Also, we will assess the classifier perfor-
mance using other 1D DUS monitors to make sure that our
algorithm does not depend on a single device. Finally, we
aim to include data from other sources such as maternal
spiral arteries and placenta. We believe that with such im-
provements the model could be implemented in our system
and used in LMIC.

5. Conclusions

We have presented an RF classifier that uses the PSD
of 1D DUS recordings to identify their source. This model
correctly detected over 80% of segments (AUROC = 0.93).
Thus, there is potential in this approach to provide real-

time feedback to users of 1D DUS technologies in LMIC.
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